Structural and plasmonic properties of TixZr1−xNy ternary nitride thin films

2019 
Abstract Nitride is a kind of alternative promising plasmonic material, and ternary nitride can provide the high diversity and tunability of the plasmonic performance. In this work, Ti x Zr 1− x N y ternary nitride films were prepared by magnetron co-sputtering method, and the effects of metal content and nitrogen content on the structural and plasmonic properties of the films were investigated. The results show that the films are fcc-structured and (1 1 1)-orientated. The alloying of the ZrN and TiN can enlarger the grain size of the films, while the over-stoichiometric nitrogen atoms can depress the crystallinity. The crossover frequency ω c and energy loss of the Ti x Zr 1− x N y ternary nitride films are lower than those of the binary TiN y and ZrN y . Increasing N-content can also reduce the energy loss of films. For the films with moderate N-content, the plasma factors Q SPP and the Q LSPR of ternary nitride films is comparable to that of TiN films. An increase in nitrogen content reduces the Q LSPR and Q SPP factors. The absorption edge and optical band-gap can be narrowed by the increasing of Ti or N-content. These results demonstrate that Ti x Zr 1− x N y ternary nitride film can be used as an alternative plasma material and their plasmonic properties can be modulated over a wide range by composition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    12
    Citations
    NaN
    KQI
    []