Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs

2001 
Ca2+ signaling forms part of a possible mechanotransduction pathway by which chondrocytes may alter their metabolism in response to mechanical loading. In this study, a well-characterized model system utilizing bovine articular chondrocytes embedded in 4% agarose constructs was used to investigate the effect of physiological mechanical compressive strain applied after 1 and 3 days in culture. The intracellular Ca2+ concentration was measured by use of the ratiometric Ca2+ indicator indo 1-AM and confocal microscopy. A positive Ca2+ response was defined as a percent increase in Ca2+ ratio above a preset threshold. A significantly greater percentage of cells exhibited a positive Ca2+ response in strained constructs compared with unstrained controls at both time points. In strained constructs, treatment with either Ga3+ or EGTA significantly reduced the number of positive Ca2+ responders compared with untreated controls. These results represent an important step in understanding the physiological role of intracellular Ca2+in chondrocytes under mechanical compression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    115
    Citations
    NaN
    KQI
    []