Long-term molecular evolutionary rate determines intraspecific genetic diversity

2020 
What determines genetic diversity and how it connects to the various biological traits is unknown. In this work, we offer answers to these questions. By comparing genetic variation of 14,671 mammalian gene trees with thousands of individual genomes of human, chimpanzee, gorilla, mouse and dog/wolf, we found that intraspecific genetic diversity is determined by long-term molecular evolutionary rates, rather than de novo mutation rates. This relationship was established during the early stage of mammalian evolution. Expanding this new finding, we developed a method to detect fluctuations of species-specific selection on genes as the deviations of intra-species genetic diversity predicted from long-term rates. We show that the evolution of epithelial cells, rather than of connective tissue, mainly contributes to morphological evolution of different species. For humans, evolution of the immune system and selective sweeps subjected by infectious diseases are most representative of adaptive evolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []