Transient Direct Corticomotoneuronal Connections during Development in Rodents, An Electrophysiological Study.

2021 
Abstract We previously observed in rodents that during the 2nd postnatal week corticospinal axons make monosynaptic connections with motoneurons. Prior to that finding, it had been believed that such contacts only occur in higher primates. Although an in vitro electrophysiological study is prerequisite for studying the developmental time course of synaptic connections, the technical difficulty of reliably recording synaptic responses from spinal motoneurons in animals over 2 weeks old hampered the study. Instead, we used retrograde transsynaptic labeling with a genetically modified rabies virus to confirm the presence of direct corticomotoneuronal connections at an early developmental stage and to show that these connections were subsequently eliminated. However, determination of an accurate elimination time course and quantitative evaluation of synaptic connectivity cannot be achieved through viral-tracing experiments. For the present study, we improved the slice preparation procedure and maintenance of slice viability, which enabled us to record postsynaptic responses using the whole cell patch-clamp technique from retrogradely labeled forearm motoneurons up until postnatal week 7. We examined the extent of corticomotoneuronal monosynaptic connections and studied the time course of their accumulation and loss. Positive ratios of monosynaptic corticomotoneuronal EPSCs increased from P6 to P8 and then plateaued (P8-P13: 65%). Thereafter, the monosynaptic connections declined until P21, at which time they were no longer detected. The time course of the falling phase and elimination was confirmed by experiments using optogenetic stimulation. The timing of the elimination fell within the same range (P18-22) estimated in our earlier study using retrograde transsynaptic labeling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []