Sensitivity of freshwaters to browning in response to future climate change

2016 
Many boreal waters are currently becoming browner with effects on biodiversity, fish production, biogeochemical processes and drinking water quality. The question arises whether and at which speed this browning will continue under future climate change. To answer the question we predicted the absorbance (a 420 ) in 6347 lakes and streams of the boreal region under future climate change. For the prediction we modified a numerical model for a 420 spatial variation which we tested on a temporal scale by simulating a 420 inter-annual variation in 48 out of the 6347 Swedish waters. We observed that inter-annual a 420 variation is strongly driven by precipitation that controls the water flushing through the landscape. Using the predicted worst case climate scenario for Sweden until 2030, i.e., a 32 % precipitation increase, and assuming a 10 % increase in imports of colored substances into headwaters but no change in land-cover, we predict that a 420 in the 6347 lakes and streams will, in the worst case, increase by factors between 1.1 and 7.6 with a median of 1.3. This increase implies that a 420 will rise from the present 0.1–86 m −1 (median: 7.3 m −1 ) in the 6347 waters to 0.1–154 m −1 (median: 10.1 m −1 ), which can cause problems for the preparation of drinking water in a variety of waters. Our model approach clearly demonstrates that a homogenous precipitation increase results in very heterogeneous a 420 changes, where lakes with a long-term mean landscape water retention time between 1 and 3 years are particularly vulnerable to climate change induced browning. Since these lake types are quite often used as drinking water resources, preparedness is needed for such waters. Copyright The Author(s) 2016
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    69
    Citations
    NaN
    KQI
    []