Influences of ball-milled limestone particle sizes and shapes on asphalt mastic stress relaxation behavior

2020 
Abstract Asphalts often have filler particles added to improve their mechanical properties. Three distinct filler particle fractions were produced by a planetary high-energy ball mill from limestone aggregates (2.36–4.75 mm). Their particle sizes and shapes were studied by binary image processing and related to milling time and aperture size. The relaxation properties of asphalt mastics prepared with fillers of various sizes and shapes were investigated at a constant strain. Insights into the effects of particle size and shape on mastic relaxation behavior were gained by single regression analysis (SRA) in conjunction with grey relational analysis (GRA). The results show that particle size distributions had noticeable local differences in their slopes and spread, while particle shape distributions showed a narrow range of variability for the studied shape descriptors. Based on stress relaxation curves, fine particles were found to cause binders to become stressed more rapidly than coarse particles. Modified mastics showed much faster stress relaxation than corresponding base mastics at stage I, and exhibited higher stable stress levels than base mastics at stage II. A stress relaxation model was established and found to agree well with experimental data, indicating that mastic relaxation properties can be effectively modeled. Furthermore, the SRA coupled with GRA can provide a simple and effective approach to predicting the effects of particle size and shape on mastic relaxation behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    1
    Citations
    NaN
    KQI
    []