Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis

2009 
Salt stress adversely affects plant growth and development. Some plants reduce the damage of high-salt stress by expressing a series of salt-responsive genes. Studies of the molecular mechanism of the salt-stress response have focused on the characterization of components involved in signal perception and transduction. In the present work, we cloned and characterized a basic helix-loop-helix (bHLH) encoding gene, OrbHLH2, from wild rice (Oryza rufipogon), which encodes a homologue protein of ICE1 in Arabidopsis. OrbHLH2 protein localized in the nucleus. Overexpression of OrbHLH2 in Arabidopsis conferred increased tolerance to salt and osmotic stress, and the stress-responsive genes DREB1A/CBF3, RD29A, COR15A and KIN1 were upregulated in transgenic plants. Abscisic acid (ABA) treatment showed a similar effect on the seed germination or transcriptional expression of stress-responsive genes in both wild type and OrbHLH2-overexpressed plants, which implies that OrbHLH2 does not depend on ABA in responding to salt stress. OrbHLH2 may function as a transcription factor and positively regulate salt-stress signals independent of ABA in Arabidopsis, which provides some useful data for improving salt tolerance in crops.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    109
    Citations
    NaN
    KQI
    []