ZIF-8 Membranes via Interfacial Microfluidic Processing in Polymeric Hollow Fibers: Efficient Propylene Separation at Elevated Pressures

2016 
Propylene/propane (C3H6/C3H8) separations are performed on a large scale by energy-intensive distillation processes. Membranes based on metal–organic framework (MOF) molecular sieves, such as zeolitic imidazolate framework-8 (ZIF-8), offer the potential to perform these separations at considerably lower cost. However, the fabrication of scalable ZIF-8 membranes with high performance at elevated pressures and temperatures is challenging. We report the fabrication of high-quality ZIF-8 hollow fiber membranes in engineered polymeric hollow fibers via the interfacial microfluidic membrane processing (IMMP) technique. Control of fiber microstructure, as well as optimization of IMMP conditions, allow us to achieve a C3H6/C3H8 separation factor of 180 (at 1 bar and 25 °C), which remains high (60) at 120 °C. Furthermore, high-pressure operation of these membranes was investigated. Detailed permeation measurements indicate excellent suppression of defects at higher pressures up to 9.5 bar, allowing a C3H6/C3H8 sep...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    76
    Citations
    NaN
    KQI
    []