language-icon Old Web
English
Sign In

Majorana tunneling entropy

2015 
In thermodynamics a macroscopic state of a system results from a number of its microscopic states. This number is given by the exponent of the system's entropy $\exp(S)$. In non-interacting systems with discrete energy spectra, such as large scale quantum dots, $S$ as a function of the temperature has usually a plateau shape with integer values of $\exp(S)$ on these plateaus. Plateaus with non-integer values of $\exp(S)$ are fundamentally forbidden and would be thermodynamically infeasible. Here we investigate the entropy of a non-interacting quantum dot coupled via tunneling to normal metals with continuum spectra as well as to topological superconductors. We show that the entropy may have non-integer plateaus if the topological superconductors support weakly overlapping Majorana bound states. This brings a fundamental change in the thermodynamics of the quantum dot whose specific heat $c_V$ acquires low temperature Majorana peaks which should be absent according to the conventional thermodynamics. We also provide a fundamental thermodynamic understanding of the transport properties, such as the linear conductance. In general our results show that the thermodynamics of systems coupled to Majorana modes represents a fundamental physical interest with diverse applications depending on versatility of possible coupling mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    31
    Citations
    NaN
    KQI
    []