The impact of pore-scale magnetic field inhomogeneity on the shape of the nuclear magnetic resonance relaxation time distribution

2016 
ABSTRACTMeasurements of the nuclear magnetic resonance (NMR) signal’s behavior with time provide powerful noninvasive insight into the pore-scale environment. The time dependence of the NMR signal, which is a function of parameters called relaxation times, is intimately linked to the geometry of the pore space and has been used successfully to estimate pore size and permeability. The basis for the pore size and permeability estimates is that interactions occurring at the grain surface often function as the primary mechanism controlling the time dependence of the NMR signal. In this limit, called the fast diffusion limit, and when each pore can be considered to be isolated, the measured relaxation times are often interpreted as representative of pore sizes. In heterogeneous media, where the NMR signal is described by a distribution of relaxation times, the measured relaxation time distribution is often interpreted as representative of the underlying pore-size distribution. We have explored a scenario in wh...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    11
    Citations
    NaN
    KQI
    []