The effect of vacancies on the microwave surface resistance of niobium revealed by positron annihilation spectroscopy

2013 
Using variable-energy positron annihilation spectroscopy, we demonstrate that a different near-surface vacancy concentration accompanies drastic differences in surface resistance of superconducting niobium cavities for particle acceleration. Our data suggest that vacuum baking at 120 °C leads to the doping of a near-surface layer with vacancy-hydrogen complexes, and that higher vacancy-type defect concentration distinguishes electropolished from chemically etched cavities. Our findings may help to explain a strong dependence of cavity performance on heat and chemical treatments, and may be of interest to other physics fields including cavity quantum electrodynamics (QED), microresonators, and single photon detectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    24
    Citations
    NaN
    KQI
    []