Protocatechuic Acid Inhibits Vulnerable Atherosclerotic Lesion Progression in Older Apoe−/− Mice

2020 
BACKGROUND: Normalization of arterial inflammation inhibits atherosclerosis. The preventive role for protocatechuic acid (PCA) in early-stage atherosclerosis is well recognized; however, its therapeutic role in late-stage atherosclerosis remains unexplored. OBJECTIVE: We investigated whether PCA inhibits vulnerable atherosclerosis progression by normalizing arterial inflammation. METHODS: Thirty-wk-old male apolipoprotein E-deficient (Apoe-/-) mice with vulnerable atherosclerotic lesions in the brachiocephalic artery were fed the AIN-93G diet alone (control) or supplemented with 0.003% PCA (wt:wt) for 20 wk. Lesion size and composition, IL-1beta, and NF-kappaB in the brachiocephalic arteries, and serum lipid profiles, oxidative status, and proinflammatory cytokines (e.g., IL-1beta, monocyte chemoattractant protein-1, and serum amyloid A) were measured. Moreover, the effect of PCA on the inflammation response was evaluated in efferocytic macrophages from C57BL/6J mice. RESULTS: Compared with the control treatment, dietary PCA supplementation significantly reduced lesion size (27.5%; P < 0.05) and also improved lesion stability (P < 0.05) as evidenced by increased thin fibrous cap thickness (31.7%) and collagen accumulation (58.3%), reduced necrotic core size (37.6%) and cellular apoptosis (73.9%), reduced macrophage accumulation (45.1%), and increased vascular smooth muscle cell accumulation (51.5%). Moreover, PCA supplementation inhibited IL-1beta expression (53.7%) and NF-kappaB activation (64.4%) in lesions. However, PCA supplementation did not change serum lipid profiles, total antioxidant capacity, and inflammatory cytokines. In efferocytic macrophages, PCA at 0.5 and 1 mumol/L inhibited Il1b/IL-1beta mRNA (27.2-46.5%) and protein (29.2-49.6%) expression and NF-kappaB activation (67.0-80.3%) by upregulation of MER proto-oncogene tyrosine kinase (MERTK) and inhibition of mitogen-activated protein kinase 3/1 (MAPK3/1). Strikingly, the similar pattern of the MERTK and MAPK3/1 changes in lesional macrophages of mice after PCA intervention in vivo was recapitulated. CONCLUSION: PCA inhibits vulnerable lesion progression in mice, which might partially be caused by normalization of arterial inflammation by upregulation of MERTK and inhibition of MAPK3/1 in lesional macrophages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    9
    Citations
    NaN
    KQI
    []