Arsenate removal from drinking water using by-products from conventional iron oxyhydroxides production as adsorbents coupled with submerged microfiltration unit.

2020 
Arsenic is among the major drinking water contaminants affecting populations in many countries because it causes serious health problems on long-term exposure. Two low-cost micro-sized iron oxyhydroxide-based adsorbents (which are by-products of the industrial production process of granular adsorbents), namely, micro granular ferric hydroxide (muGFH) and micro tetravalent manganese feroxyhyte (muTMF), were applied in batch adsorption kinetic tests and submerged microfiltration membrane adsorption hybrid system (SMAHS) to remove pentavalent arsenic (As(V)) from modeled drinking water. The adsorbents media were characterized in terms of iron content, BET surface area, pore volume, and particle size. The results of adsorption kinetics show that initial adsorption rate of As(V) by muTMF is faster than muGFH. The SMAHS results revealed that hydraulic residence time of As(V) in the slurry reactor plays a critical role. At longer residence time, the achieved adsorption capacities at As(V) permeate concentration of 10 mug/L (WHO guideline value) are 0.95 and 1.04 mug/mg for muGFH and muTMF, respectively. At shorter residence time of ~ 3 h, muTMF was able to treat 1.4 times more volumes of arsenic-polluted water than muGFH under the optimized experimental conditions due to its fast kinetic behavior. The outcomes of this study confirm that micro-sized iron oyxhydroxides, by-products of conventional adsorbent production processes, can successfully be employed in the proposed hybrid water treatment system to achieve drinking water guideline value for arsenic, without considerable fouling of the porous membrane. Graphical abstract.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    10
    Citations
    NaN
    KQI
    []