Diagnosis of Xinmo (China) Landslide Based on Interferometric Synthetic Aperture Radar Observation and Modeling

2019 
The Xinmo landslide occurred on 24 June 2017 and caused huge casualties and property losses. As characteristics of spatiotemporal pre-collapse deformation are a prerequisite for further understanding the collapse mechanism, in this study we applied the interferometric synthetic aperture radar (InSAR) technique to recover the pre-collapse deformation, which was further modeled to reveal the mechanism of the Xinmo landslide. Archived SAR data, including 44 Sentinel-1 A/B data and 20 Envisat/ASAR data, were used to acquire the pre-collapse deformation of the Xinmo landslide. Our results indicated that the deformation of the source area occurred as early as 10 years before the landslide collapsed. The deformation rate of source area accelerated about a month before the collapse, and the deformation rate in the week before the collapse reached 40 times the average before the acceleration. Furthermore, the pre-collapse deformation was modeled with a distributed set of rectangular dislocation sources. The characteristics of the pre-collapse movement of the slip surface were acquired, which further confirmed that a locked section formed at the bottom of the slope. In addition, the spatial-temporal characteristics of the deformation was found to have changed significantly with the development of the landslide. We suggested that this phenomenon indicated the expansion of the slip surface and cracks of the landslide. Due to the expansion of the slip surface, the locked section became a key area that held the stability of the slope. The locked section sheared at the last stage of the development, which triggered the final run-out. Our study has provided new insights into the mechanism of the Xinmo landslide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    8
    Citations
    NaN
    KQI
    []