Electron-multiplying CCDs for future space instruments
2013
The rapid proliferation of Electron Multiplying Charge Coupled Devices (EMCCDs) in recent years has revolutionized
low light imaging applications. EMCCDs in particular show promise to enable the construction of versatile space
astronomy instruments while space-based observations enable unique capabilities such as high-speed accurate
photometry due to reduced sky background and the absence of atmospheric scintillation. The Canadian Space Agency is
supporting innovation in EMCCD technology by increasing its Technology Readiness Level (TRL) aimed at reducing
risk, cost, size and development time of instruments for future space missions. This paper will describe the advantages of
EMCCDs compared to alternative low light imaging technologies. We will discuss the specific issues associated with
using EMCCDs for high-speed photon counting applications in astronomy. We will show that a careful design provided
by the CCD Controller for Counting Photons (CCCP) makes it possible to operate the EMCCD devices at rates in excess
of 10 MHz, and that levels of clock induced charge and dark current are dramatically lower than those experienced with
commercial cameras. The results of laboratory characterization and examples of astronomical images obtained with
EMCCD cameras will be presented. Issues of radiation tolerance, charge transfer efficiency at low signal levels and life
time effects on the electron-multiplication gain will be discussed in the context of potential space applications.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
15
References
9
Citations
NaN
KQI