Leaf Litter Decomposition and Mitigation of CO 2 Emissions in Cocoa Ecosystems

2019 
Studies simultaneously quantifying litter weight losses and rates of CO2-C evolved are few, though essential for accurate estimates of forest carbon budgets. A 120-day dry matter loss and a 130-day carbon emission experiments were concurrently conducted at the soil laboratory of the University of Reading, UK. Leaf litters of tree species comprising cocoa (Theobroma cacao), Newbouldia laevis (dominant shade tree in Eastern region (ER)) and Persea americana (dominant shade tree in Western region (WR)) of Ghana were incubated using a single tree leaf litter and/or a 1:1 mixed species leaf litters to determine and predict the litter decomposition and C dynamics in cocoa systems with or without the shade trees. Decomposition and C release trends in the ER systems followed: shade > mixed cocoa-shade = predicted mixed litter > cocoa; and in the WR, the order was: cocoa = mixed cocoa-shade > predicted mixed > shade. Differences between released C estimated from litter weight loss and CO2-C evolution measurement methods were not consistent. Regression analysis revealed a strong (R2 = 0.71) relationship between loss of litter C and the CO2-C evolution during litter decomposition. The large C pool for shaded cocoa systems indicates the potential to store more C and thus, its promotion could play a significant role in atmospheric CO2 mitigations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    1
    Citations
    NaN
    KQI
    []