Ultrathin SnS2 Nanoparticles on Graphene Nanosheets: Synthesis, Characterization, and Li-Ion Storage Applications

2012 
Ultrathin SnS2 nanoparticle decorated graphene nanosheet (GNS) electrode materials with delaminated structure were prepared using stepwise chemical modification of graphene oxide (GO) nanosheets at very dilute conditions, followed by a hydrothermal treatment. The chemical modification of the graphene nanosheet surface with Sn ions enables the precipitation of ultrathin nanoparticles. The TEM analysis reveals the SnS2 nanoparticles are homogeneously distributed on the loosely packed graphene surface in such a way that the GNS restacking was hindered. X-ray photoelectron spectroscopic analysis reveals the bonding characteristics of the SnS2 on the GNS. The obtained nanocomposite exhibits a reversible capacity of 1002 mAh/g, which is significantly higher than its calculated theoretical capacity (584 mAh/g). Furthermore, its cycling performance is enhanced and after 50 cycles, and the charge capacity still remained 577 mAh/g, which is very close to its theoretical capacity. Due to the synergic effect, the Li-...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    120
    Citations
    NaN
    KQI
    []