Effect of tube-electrode inner diameter on electrochemical discharge machining of nickel-based superalloy

2016 
Nickel-based superalloys are widely employed in modern aircraft engines because of their excellent material characteristics, particularly in the fabrication of film cooling holes. However, the high machining requirement of a large number of film cooling holes can be extremely challenging. The hybrid machining technique of tube electrode high-speed electrochemical discharge drilling(TEHECDD) has been considered as a promising method for the production of film cooling holes. Compared with any single machining process, this hybrid technique requires the removal of more complex machining by-products, including debris produced in the electrical discharge machining process and hydroxide and bubbles generated in the electrochemical machining process. These by-products significantly affect the machining efficiency and surface quality of the machined products. In this study, tube electrodes in different inner diameters are designed and fabricated, and the effects of inner diameter on the machining efficiency and surface quality of TEHECDD are investigated. The results show that larger inner diameters could effectively improve the flushing condition and facilitate the removal of machining by-products. Therefore, higher material removal efficiency, surface quality, and electrode wear rate could be achieved by increasing the inner diameter of the tube electrode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []