Study on the influence of Mg content on the risk of hydrogen production from waste alloy dust in wet dust collector

2021 
Abstract We use a proprietary automatic Al–Mg alloy–water reaction test apparatus to compare the hydrogen evolution profiles of Al-xMg (x = 10%,20%) with different particle sizes, characterize the waste Al-xMg alloy dust particles before and after reaction through SEM, EDS, and XRD, and present a three-stage four-step hydrogen evolution model of Al-xMg (x ≤ 35%) alloy dust particles. It is discovered that the reaction of the Al–Mg alloy in water is a hydrogen evolution–adsorption–slow diffusion process. The particular β-Al3Mg2 in Al-xMg (x ≤ 35%) will adsorb the resulting hydrogen to form MgH+ and adhere to the surface of the particles. As the Mg content in the alloy increases, the hydrogen evolution reduces. The entire process lasts around 5–6 h, with maximum hydrogen conversion rate of 54% (Al–10%Mg, d (50) = 12 μm, α = 0.544). Our hydrogen evolution model provides very useful theoretical references for avoiding hydrogen explosion in Al–Mg alloy manufacturing facilities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []