Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy.

2020 
Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9  $${{{\rm{A}}\,{\rm{mg}}^{-1}_{{\rm{Ir}}}}}$$ whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10−3  $${{{\rm{A}}\,{\rm{mg}}^{-1}_{{\rm{Ir}}}}}$$ ). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    121
    Citations
    NaN
    KQI
    []