Sequence variability of the respiratory syncytial virus (RSV) fusion gene among contemporary and historical genotypes of RSV/A and RSV/B

2017 
Background The fusion (F) protein of RSV is the major vaccine target. This protein undergoes a conformational change from pre-fusion to post-fusion. Both conformations share antigenic sites II and IV. Pre-fusion F has unique antigenic sites p27, o, α2α3β3β4, and MPE8; whereas, post-fusion F has unique antigenic site I. Our objective was to determine the antigenic variability for RSV/A and RSV/B isolates from contemporary and historical genotypes compared to a historical RSV/A strain. Methods The F sequences of isolates from GenBank, Houston, and Chile (N = 1,090) were used for this analysis. Sequences were compared pair-wise to a reference sequence, a historical RSV/A Long strain. Variability (calculated as %) was defined as changes at each amino acid (aa) position when compared to the reference sequence. Only aa at antigenic sites with variability ≥5% were reported. Results A total of 1,090 sequences (822 RSV/A and 268 RSV/B) were analyzed. When compared to the reference F, those domains with the greatest number of non-synonymous changes included the signal peptide, p27, heptad repeat domain 2, antigenic site o, and the transmembrane domain. RSV/A subgroup had 7 aa changes in the antigenic sites: site I (N = 1), II (N = 1), p27 (N = 4), α2α3β3β4(AM14) (N = 1), ranging in frequency from 7–91%. In comparison, RSV/B had 19 aa changes in antigenic sites: I (N = 3), II (N = 1), p27 (N = 9), o (N = 4), α2α3β3β4(AM14) (N = 1), and MPE8 (N = 1), ranging in frequency from 79–100%. Discussion Although antigenic sites of RSV F are generally well conserved, differences are observed when comparing the two subgroups to the reference RSV/A Long strain. Further, these discrepancies are accented in the antigenic sites in pre-fusion F of RSV/B isolates, often occurring with a frequency of 100%. This could be of importance if a monovalent F protein from the historical GA1 genotype of RSV/A is used for vaccine development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    36
    Citations
    NaN
    KQI
    []