Comparative Study of Process Integration and Retrofit Design of a Liquefied Natural Gas (LNG) Regasification Process Based on Exergy Analyses: A Case Study of an LNG Regasification Process in South Korea

2014 
Exergy analysis of the retrofit design scheme of a conventional liquefied natural gas (LNG) regasification process in South Korea was considered in this study. A new exergy evaluation method called exergy decomposition is introduced, in which the exergy is decomposed into thermal and chemical exergies. In studying the conventional LNG regasification process, we found that a large portion of chemical exergy is lost by boil-off gas flaring. Of 17 MW of thermal exergy transferred from cold LNG to seawater in the regasification unit, a fraction as large as 16 MW (close to 95%) is wasted because of heat-transfer irreversibility, limiting the rational exergetic efficiency of the overall process to merely 0.847. Previously reported design schemes, namely, the dual Brayton cycle and the organic Rankine cycle, with low-grade heat sources were also evaluated using the new method and were found to limit the overall rational exergetic efficiencies to 0.890 and 0.849, respectively. A new integrated, retrofitted scheme...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    10
    Citations
    NaN
    KQI
    []