Pro-inflammatory cytokine-stimulated first trimester decidual cells enhance macrophage-induced apoptosis of extravillous trophoblasts

2012 
Abstract Objective As human blastocyst-derived extravillous trophoblasts (EVTs) invade the early decidua, they are positioned to interact with immune cells and resident decidual cells, and remodel spiral arteries into high capacity vessels that increase blood flow to the developing fetal-placental unit. Shallow EVT invasion elicits incomplete vascular transformation and reduces uteroplacental blood flow that presages adverse pregnancy outcomes. Excess macrophages in the decidua induce EVT apoptosis via tumor necrosis factor-alpha (TNF-α) secretion. Our previous observation that pro-inflammatory cytokines enhance neutrophil and macrophage activator granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in first trimester decidual cells is now extended to include: 1) the specific macrophage activator M-CSF; 2) macrophage activation and subsequent enhancement of EVT apoptosis by both GM-CSF and M-CSF. Study design Quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay assessed M-CSF expression in first trimester decidual cells incubated with interleukin-1 beta (IL-1β) or TNF-α. Peripheral monocyte-derived macrophages pre-incubated with conditioned media from decidual cell cultures were co-cultured with a first trimester EVT cell line, HTR-8/SVneo cells. Macrophage activation was examined and EVT apoptosis evaluated by DNA fragmentation, caspase activation and cell membrane asymmetry. Results IL-1β or TNF-α significantly enhanced M-CSF expression in first trimester decidual cells. The conditioned media from these cultures activates macrophages, which promote caspase 3/7-dependent EVT apoptosis with antibodies against GM-CSF or M-CSF blocking this effect. Conclusions Pro-inflammatory cytokines increases synthesis of M-CSF in first trimester decidual cells. Both GM-CSF and M-CSF activate macrophages, which initiate caspase-dependent EVT apoptosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    39
    Citations
    NaN
    KQI
    []