Nonclassical Field States in Quantum Optics and Particle Physics

1998 
The primary aim of the present paper is to draw the attention of particle physicists to new developments in studying squeezed and correlated states of the electromagnetic field, and those working on the latest developments to new findings about multiplicity distributions and other specific effects in quantum chromodynamics. New types of nonclassical states used in quantum optics such as squeezed states, correlated states, and even and odd coherent states (Schrodinger cat states) for one-mode and multimode interactions are reviewed. Their distribution functions are analyzed according to the method first used for multiplicity distributions in high-energy particle interactions. The phenomenon of oscillations of particle distribution functions of squeezed fields is described and related to the phenomenon of oscillations of cumulant moments of some distributions for squeezed and correlated field states. Possible extension of the method to fields different from the electromagnetic field (gluons, pions, etc.) is conjectured, and some predictions of specific effects in nucleus-nucleus interactions at high energies are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    103
    References
    6
    Citations
    NaN
    KQI
    []