Regulation of root-to-leaf Na and Cl transport and its association with photosynthetic activity in salt-tolerant soybean genotypes

2019 
ABSTRACTSoil salinity is a major constraint to sustainable crop production. Genetic improvements are needed for growing soybean in salinity-prone environments. Salt-tolerant soybean genotypes alleviate a reduction in photosynthesis and growth under saline conditions; however, the detailed mechanisms involved remain unclear. Here, we aimed to clarify how Na and Cl root-to-leaf transport is quantitatively regulated, and to identify whether photosynthetic tolerance depends on traits associated with either stomata or with mesophyll tissues. Two pairs of pot-grown soybean near-isogenic lines (NILs) consisting of tolerant and susceptible counterparts, derived from a cross between salt-tolerant FT-Abyara and salt-sensitive C01, were subjected to salinity treatment in a rainout greenhouse. Comparison of photosynthetic responses between genotypes indicated that genotypic differences in salinity tolerance depended on the ability for sustained CO2 assimilation in mesophyll tissues, rather than stomatal conductance. ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    4
    Citations
    NaN
    KQI
    []