Customization and optimization of SSD-based neural network model for detection of external force damage on transmission lines

2019 
Based on the principle of SSD (Single Shot Multibox Detector) convolutional neural network algorithm, this paper develops corresponding training strategies, and uses the source data generated under a large number of power-grid scenarios to train and generate a 100-megabyte neural network model for intelligent monitoring of external force damage on transmission lines. Using the deep compression technology, the trained neural network model is re-trained and optimized in a targeted manner to ensure a compression ratio of 30%-50% under the premise that the accuracy is not degraded. In this way, the hardware storage resource configuration is more reasonable when the model is deployed on the embedded platform.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []