Ultrafast attosecond-magnetic-field generation of the charge migration process based on HeH2+ and H2+ electronically excited by circularly polarized laser pulses.

2021 
The ultrafast process by the electron in molecular ions from one site or region to another that has come to be known as charge migration (CM), which is of fundamental importance to photon induced chemical or physical reactions. In this work, we study the electron current and ultrafast magnetic-field generation based on CM process of oriented asymmetric (HeH2+) and symmetric (H2 +) molecular ions. Calculated results show that they are ascribed to quantum interference of electronic states for these molecular ions under intense circularly polarized (CP) laser pulses. The two scenarios of (i) resonance excitation and (ii) direct ionization are considered through appropriately utilizing designed laser pulses. By comparison, the magnetic field induced by the scenario (i) is stronger than that of scenario (ii) for molecular ions. However, the scheme (ii) is very sensitive to the helicity of CP field, which is opposite to the scenario (i). Moreover, the magnetic field generated by H2 + is stronger than that by HeH2+ through scenario (i). Our findings provide a guiding principle for producing ultrafast magnetic fields in molecular systems for future research in ultrafast magneto-optics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []