Regular and linear permutation languages.

2016 
A permutation rule is a non-context-free rule whose both sides contain the same multiset of symbols with at least one non-terminal. This rule does not add or substitute any symbols in the sentential form, but can be used to change the order of neighbouring symbols. In this paper, we consider regular and linear grammars extended with permutation rules. It is established that the generative power of these grammars relies not only on the length of the permutation rules, but also whether we allow or forbid the usage of erasing rules. This is quite surprising, since there is only one non-terminal in sentential forms of derivations for regular or linear grammars. Some decidability problems and closure properties of the generated families of languages are investigated. We also show a link to a similar model which mixes the symbols: grammars with jumping derivation mode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []