Investigation on conformational variation and activity of trypsin affected by black phosphorus quantum dots via multi-spectroscopy and molecular modeling.

2021 
Binding interaction between black phosphorus quantum dots (BPQDs) and trypsin was researched deeply to illustrate the variations on conformation and activity of trypsin affected by BPQDs via multi-spectroscopy and molecular modeling. Experimental results implied that inherent fluorescence of trypsin was quenched by BPQDs via static fluorescence quenching mode. BPQDs bound with trypsin to construct ground-state complex under the binding forces of van der Waal interaction and hydrophobic interaction, resulting in the conformational change of trypsin to be more hydrophilic and incompact. The result of molecular modeling indicated that BPQDs interacted with trypsin at its allosteric site and inhibited the activity of trypsin via non-competitive manner. Finally, BPQDs efficiently inhibited the digestion activity of trypsin on human serum albumin, human cervical carcinoma HeLa cells, and human lung adenocarcinoma A549 cells. This work not only explores the in-depth understanding on the influence of BPQDs on proteinases but also paves the way for further application of BPQDs on human beings for diseases treatments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    2
    Citations
    NaN
    KQI
    []