Long-Term Phosphorus Loading and Springtime Temperatures Explain Interannual Variability of Hypoxia in a Large Temperate Lake

2018 
Anthropogenic eutrophication has led to the increased occurrence of hypoxia in inland and coastal waters around the globe. While low dissolved oxygen conditions are known to be driven primarily by nutrient loading and water column stratification, the relative importance of these factors and their associated time scales are not well understood. Here, we explore these questions for Lake Erie, a large temperate lake that experiences widespread annual summertime hypoxia. We leverage a three-decade data set of summertime hypoxic extent (1985–2015) and examine the role of seasonal and long-term nutrient loading, as well as hydrometeorological conditions. We find that a linear combination of decadal total phosphorus loading from tributaries and springtime air temperatures explains a high proportion of the interannual variability in average summertime hypoxic extent (R2 = 0.71). This result suggests that the lake responds primarily to long-term variations in phosphorus inputs, rather than springtime or annual loa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    29
    Citations
    NaN
    KQI
    []