Mechanism of long-term toxicity of CuO NPs to microalgae

2018 
AbstractLittle is known regarding the detailed mechanism of CuO NPs’ toxicity to microalgal primary metabolism pathway. Photosynthesis and respiration are the most important primary metabolism and the main sources of production of reactive oxygen species (ROS), but the effect of CuO NPs on both of them has not been systematically studied to date. Our research demonstrated that long-term treatment with CuO NPs significantly inhibited activities of photosynthesis and respiration in microalgae, and the photosynthesis was more sensitive to the toxicity of CuO NPs than respiration. CuO NPs could be absorbed by microalgae and be converted into Cu2O NPs concentrated in chloroplast. The internalized Cu, regardless of whether the exposure was Cu2+ or CuO NPs had the same capacity to damage chloroplast structure. The result also shows that the oxygen-evolving complex (OEC) in the photosynthetic electron transport chain was the most sensitive site to CuO NPs and Cu2+-treated microalgae had the same damage site as th...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    11
    Citations
    NaN
    KQI
    []