Modeling the complete prevention of disruption-generated runaway electron beam formation with a passive 3D coil in SPARC

2021 
The potential formation of multi-mega-ampere beams of relativistic "runaway" electrons (REs) during sudden terminations of tokamak plasmas poses a significant challenge to the tokamak's development as a fusion energy source. Here, we use state-of-the-art modeling of disruption magnetohydrodynamics coupled with a self-consistent evolution of RE generation and transport to show that a non-axisymmetric in-vessel coil will passively prevent RE beam formation during disruptions in the SPARC tokamak, a compact, high-field, high-current device capable of achieving a fusion gain Q > 2 in deuterium-tritium plasmas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []