The truncated conjugate gradient (TCG), a non-iterative/fixed-cost strategy for computing polarization in molecular dynamics: Fast evaluation of analytical forces
2017
In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180–190 (2017)], we proposed the Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in polarizable molecular simulations. The method consists in truncating the conjugate gradient algorithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered “non-iterative.” This gives the possibility to derive analytical forces avoiding the usual energy conservation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation of the analytical gradients, which is more complex than that with a usual solver. In this paper, after reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient implementation of the TCG calculation. The complete cost of the approach is then measured as it is tested using a multi-time step scheme and compared to timings using usual iterative approaches. We show that the T...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
18
Citations
NaN
KQI