Increased Plasma Nitrite and von Willebrand Factor Indicates Early Diagnosis of Vascular Diseases in Chemotherapy Treated Cancer Patients

2019 
Chemotherapy induced cardiotoxicity leads to development of hypertension, conduction abnormalities, and congestive heart failure. However, there is no simple test to detect and assess cardiovascular risk in a chemotherapy treated cancer patient. The aim of the present study on cancer patients treated with (n = 66) and without (n = 66) chemotherapy is to identify indicators from plasma for vascular injury. The levels of plasma nitrite, asymmetric dimethyl arginine (ADMA), von Willebrand factor (vWF), cardiac troponins, lipid peroxidation (MDA), and lactate dehydrogenase (LDH) were estimated. An R package, namely, Optimal Cutpoints, and a machine learning method—support vector machine (SVM) were applied for identifying the indicators for cardiovascular damage. We observed a significant increase in nitrite (p < 0.001) and vWF (p < 0.001) level in chemotherapy treated patients compared to untreated cancer patients and healthy controls. An increased MDA and LDH activity from plasma in chemotherapy treated cancer patients was found. The R package analysis and SVM model developed using three indicators, namely, nitrite, vWF, and MDA, can distinguish cancer patients before and after chemotherapy with an accuracy of 87.8% and AUC value of 0.915. Serum collected from chemotherapy treated patients attenuates angiogenesis in chick embryo angiogenesis (CEA) assay and inhibits migration of human endothelial cells. Our work suggests that measurement of nitrite along with traditional endothelial marker vWF could be used as a diagnostic strategy for identifying susceptible patients to develop cardiovascular dysfunctions. The results of the present study offer clues for early diagnosis of subclinical vascular toxicity with minimally invasive procedure. Schematic representation of chemotherapy induced elevated plasma nitrite level in cancer patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    4
    Citations
    NaN
    KQI
    []