Fabrication of β-cyclodextrin and sialic acid copolymer by single pot reaction to site specific drug delivery

2017 
Abstract The fabrication of supramolecular host in combination biomolecules is an interesting idea in modern drug delivery for development of new polymer with advanced chemical and biological properties. Herein, hyper-crosslinked copolymer was fabricated from β-cyclodextrin (β-CD) and sialic acid (SA) monomers, which can be undoublty considered as a new class of copolymer. The as-synthesized copolymer has complexation properties, which could cover the drug within the structure and deliver to the site of action. The well-known inclusion capability of β-CD and targeted efficacy of SA made it more appropriate for targeted drug delivery. The copolymer was characterized using a wide range of spectroscopic and microscopic techniques such as synchrotron radiation based FTIR spectroscopy (SR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The surface area and porosity were calculated by using Nitrogen adsorption method. Doxorubicin (Dox) was selected as a model drug to evaluate the loading efficiency and cellular penetration ability of the copolymer. The copolymer showed high adsorption towards Dox with no significant cytotoxic effects on HeLa cells as proved by cell viability assay. High cellular penetration of Dox loaded copolymer was also recorded by confocal microscopy when compared with free Dox in HeLa cells at 4 h of exposure. Thus, β-CD-SA copolymer could be a useful carrier for targeted drug delivery of cancer and has the potential for further investigation in viral and nervous disease due to the targeting ability of SA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    7
    Citations
    NaN
    KQI
    []