Dynamic mapping using an electrified ultrasonic aspirator in lipomyelomeningocele and spinal cord detethering surgery-a feasibility study.

2021 
BACKGROUND Intraoperative neurophysiologic monitoring (IONM) is an established technique and adjunct of brain and spinal lesion resection surgery. In spina bifida syndrome surgery, mapping of the surgical wound is a common and accepted method in determining the position and functionality of nerve roots of the cauda equina (CE), especially when the anatomy is not straightforward and roots are splayed across or entangled within the lesion. Here, we describe a novel technique of continuous CE mapping using an electrified cavitron ultrasonic aspirator (eCUSA) in children with lipomyelomeningocele (LMMC) lesions. METHODS We assessed a method of dynamic CE mapping using an eCUSA as a stimulation probe. Twenty children (0.5-18 years) were included in this study, diagnosed with occult spina bifida LMMC in which the eCUSA stimulator was applied. IONM data and 2-weeks post-operative data were collected. RESULTS LMMC lesions were located in the lumbar, sacral, and lumbosacral spine. eCUSA stimulation at 0.3-3.0 mA intensities elicited positive lower extremity muscle responses in 12 of the 20 patients included in the study. These responses allowed the surgeon real-time identification of the nerve roots tangent at the LMMC-cauda equina structure and intensive removal of the fat tissue in the area non-responding to the eCUSA stimulation. CONCLUSION Continuous eCUSA-based stimulation of the cauda equina during LMMC resection is a feasible mapping technique with potential added value improving safety of untethering. Future studies evaluating extension of untethering, as well as the rates of retethering and long-term neurological and urological outcomes, are warranted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []