Research on magnetorheological elastomer forming process for complicated superalloy hollow part

2021 
In this paper, a magnetorheological elastomer (MRE) forming process is developed to form a complicated hollow part of GH4169 superalloy. The novel forming process can realize the differential loading of the forming pressure and avoid liquid leaking in the conventional hydraulic forming process. The principle of the MRE forming process can be illustrated as that the MRE will bulge under the effect of the applied magnetic field. Hence, the local forming pressure in the deformation zone of the part will increase during the forming process. To estimate the range of current and the axial displacement of the punch, a power equation based on power approach and electromagnetic theory is established. Numerical simulations and experiments study the deformation process and the die filling of tube blank under different magnetic field intensities. Response surface methodology (RSM) is used to determine the optimal process parameters. RSM also models the predicted equations of the maximum thinning ratio and the average bulging diameter. Besides, the fitted RSM model’s accuracy is quantified by a statistical method of analysis of variance. Finally, the predicted equations’ reliability and the optimal process parameters obtained by RSM are proved by a validated experiment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []