Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient

2021 
How enhancers interpret morphogen gradients to generate spatial patterns of gene expression is a central question in developmental biology. Although recent studies have begun to elucidate that enhancers can dictate whether, when, and at what rate a promoter will engage in transcription, the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal synthetic enhancer system in embryos of the fruit fly Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal binding site. By quantifying transcriptional activity using live imaging, our experiments revealed that this single Dorsal binding site is capable of regulating whether promoters engage in transcription in a Dorsal concentration-specific manner. By modulating binding-site affinity, we determined that a gene9s decision to engage in transcription and its transcriptional onset time can be explained by a simple theoretical model where the promoter has to traverse multiple kinetic barriers before transcription can ensue. The experimental platform developed here pushes the boundaries of live-imaging in studying gene regulation in the early embryo by enabling the quantification of the transcriptional activity driven by a single transcription factor binding site, and making it possible to build more complex enhancers from the ground up in the context of a dialogue between theory and experiment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []