Progress in controlled polymerization and design of novel polymer architectures

1997 
Recent developments of new synthetic methods are stimulating the design of new polymers. Modern generations of highly active and selective transition metal catalysts give excellent control on molecular weight, regio- and stereoregularities, long- and short-chain-branching, polymer crystallization, and morphology of olefin, diene, cyclolefin, and styrene polymers. Ethene is copolymerized with polar comonomers such as carbon monoxide and acrylates in new low pressure processes. Catalytic coupling reactions of aromatic halogen compounds and bisphenols afford rigid polyarylenes. Living radical polymerization (TEMPO and ATRP) produce a wide range of telechelics, block copolymers and cascade macromolecules. In reactive processing oxazoline-mediated coupling reactions are the key to melt diversification of well-known polymers. Supramolecular concepts are being applied to tailor hybrid polymers and nanocomposites. Precision in polymer synthesis is the key to new materials with wide application range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    8
    Citations
    NaN
    KQI
    []