Development of a Cofactor Balanced, Multi Enzymatic Cascade Reaction for the Simultaneous Production of L-Alanine and L-Serine from 2-Keto-3-deoxy-gluconate

2020 
Enzymatic reaction cascades represent a powerful tool to convert biogenic resources into valuable chemicals for fuel and commodity markets. Sugars and their breakdown products constitute a significant group of possible substrates for such biocatalytic conversion strategies to value-added products. However, one major drawback of sugar cascades is the need for cofactor recycling without using additional enzymes and/or creating unwanted by-products. Here, we describe a novel, multi-enzymatic reaction cascade for the one-pot simultaneous synthesis of L-alanine and L-serine, using the sugar degradation product 2-keto-3-deoxygluconate and ammonium as precursors. To pursue this aim, we used four different, thermostable enzymes, while the necessary cofactor NADH is recycled entirely self-sufficiently. Buffer and pH optimisation in combination with an enzyme titration study yielded an optimised production of 21.3 +/− 1.0 mM L-alanine and 8.9 +/− 0.4 mM L-serine in one pot after 21 h.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []