Thermal Conductivity of Graphene Wrinkles: A Molecular Dynamics Simulation

2016 
Based on the nonequilibrium molecular dynamics simulations, the heat conduction in a novel deformation of graphene, named graphene wrinkle (GW), is investigated. Distinct from pristine graphene, the GW exhibits a relatively low thermal conductivity. We observe that the low thermal conductivity stems from the strong phonon localizations, which are concentrated on the joint regions between crests and troughs of wrinkles. The suppression in GW thermal conductivity could be further attributed to the enhanced phonon scatterings, as evidenced by the vibrational density of states (VDOS) attenuation in the low frequency region, the G-band redshift of VDOS due to the flattened phonon dispersion curves (low phonon group velocities), and the decreased phonon lifetime. In addition, we find that the thermal conductivity of GW is almost insensitive to temperature in the range between 200 and 600 K. It is induced by the significant contribution of low frequency phonon modes, which are more influential in the direction p...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    40
    Citations
    NaN
    KQI
    []