Self-catalyzed site-specific depurination of guanine residues within gene sequences

2006 
A self-catalyzed, site-specific guanine-depurination activity has been found to occur in short gene sequences with a potential to form a stem-loop structure. The critical features of that catalytic intermediate are a 5′-G-T-G-G-3′ loop and an adjacent 5′-T·A-3′ base pair of a short duplex stem stable enough to fix the loop structure required for depurination of its 5′-G residue. That residue is uniquely depurinated with a rate some 5 orders of magnitude faster than that of random “spontaneous” depurination. In contrast, all other purine residues in the sequence depurinate at the spontaneous background rate. The reaction requires no divalent cations or other cofactors and occurs under essentially physiological conditions. Such stem-loops can form in duplex DNA under superhelical stress, and their critical sequence features have been found at numerous sites in the human genome. Self-catalyzed stem-loop-mediated depurination leading to flexible apurinic sites may therefore serve some important biological role, e.g., in nucleosome positioning, genetic recombination, or chromosome superfolding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    35
    Citations
    NaN
    KQI
    []