Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice

2021 
The strong electron interactions in the minibands formed in moire superlattices of van der Waals materials, such as twisted graphene and transition metal dichalcogenides, make such systems a fascinating platform with which to study strongly correlated states1–19. In most systems, the correlated states appear when the moire lattice is filled by an integer number of electrons per moire unit cell. Recently, correlated states at fractional fillings of 1/3 and 2/3 holes per moire unit cell have been reported in the WS2/WSe2 hetero-bilayer, hinting at the long-range nature of the electron interaction16. Here we observe a series of correlated insulating states at fractional fillings of the moire minibands on both electron- and hole-doped sides in angle-aligned WS2/WSe2 hetero-bilayers, with certain states persisting at temperatures up to 120 K. Simulations reveal that these insulating states correspond to ordering of electrons in the moire lattice with a periodicity much larger than the moire unit cell, indicating a surprisingly strong and long-range interaction beyond the nearest neighbours. Twisted bilayers of WS2 and WSe2 have correlated states that correspond to real-space ordering of the electrons on a length scale much longer than the moire pattern.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    35
    Citations
    NaN
    KQI
    []