The Tissue Origin Effect of Extracellular Vesicles on Cartilage and Bone Regeneration.

2021 
Abstract Direct implantation of mesenchymal stem cells (MSCs) for cartilage and bone tissue engineering faces challenges, such as immune rejection and loss of cellular viability or functionality. As nanoscale natural particles, extracellular vesicles (EVs) of MSCs have potential to circumvent these problems. It is significant to investigate the impact of the tissue origin of MSCs on the therapeutic bioactivity of their corresponding EVs for cartilage and bone regeneration. Here, rat MSCs isolated from the adipose, bone marrow, and synovium are cultured to obtain their corresponding EVs (ADSC-EVs, BMSC-EVs, and SMSC-EVs, respectively). The ADSC-EVs stimulate the migration, proliferation, and chondrogenic and osteogenic differentiation of BMSCs in vitro as well as cartilage and bone regeneration in a mouse model more than the BMSC-EVs or SMSC-EVs. Proteomics analysis reveals that the tissue origin contributes to the distinct protein profiles among the three types of EVs, which induced cartilage and bone regenerative capacities by potential mechanisms of regulating signaling pathways including focal adhesion, ECM-receptor interaction, actin cytoskeleton, cAMP, and PI3K-Akt signaling pathways. Consequently, these findings provide insight that the adipose may be a superior candidate in EV-based nanomedicine for cartilage and bone regeneration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    7
    Citations
    NaN
    KQI
    []