Architecture Optimization of More Electric Aircraft Actuation System

2011 
The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system. The traditional “trial and error” method cannot satisfy the design demands. In this paper, firstly, the composition of more electric aircraft (MEA) flight control actuation system (FCAS) is introduced, and the possible architecture quantity is calculated. Secondly, the evaluation criteria of FCAS architecture with respect to safe reliability, weight and efficiency are proposed, and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration. Finally, the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm (GA). Compared to the traditional actuation system architecture, which only adopts servo valve controlled hydraulic actuators, the weight of the optimized more electric actuation system architecture can be reduced by 6%, and the efficiency can be improved by 30% based on the safe reliability requirements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    34
    Citations
    NaN
    KQI
    []