ADAPTATION TO REPEATED GAIT-SLIP PERTURBATIONS AMONG INDIVIDUALS WITH MULTIPLE SCLEROSIS

2019 
ABSTRACT Background Perturbation training, built upon motor adaptation and learning, has been increasingly used as a fall prevention paradigm in older adults. This training paradigm involves repeated externally-induced perturbations (like slips) to facilitate the error-driven learning of necessary motor skills for preventing falls. It remains unknown if people with multiple sclerosis can adapt to large-scale slip perturbations, which impedes the application of perturbation training in persons with multiple sclerosis. This study explored whether people with multiple sclerosis can adapt to large-scale repeated gait-slips. Methods Thirteen individuals with multiple sclerosis (the mean ± standard deviation of the Patient Determined Disability Steps: 2.27 ± 1.42) were exposed unexpectedly to a block of five repeated standard slips while walking on a treadmill. The outcome (fall or recovery) for each slip, as our primary outcome measure, was determined. A battery of secondary variables, including dynamic gait stability and gait parameters, were also calculated. Both primary and secondary variables were compared across trials. Results Our participants showed a rapidly reduced slip-fall rate (from 92.3% on the first slip to 30.8% on the fifth, p Conclusion With practice, people with multiple sclerosis can adapt to large-scale, high-speed, gait-slips and acquire necessary skills against falls. Such skills primarily involve proactive strategy which is assisted by reactive strategy. The proactive strategy would shift the body's center of mass closer to the base of support, improving dynamic gait stability and reducing falls. Our findings could provide a theoretical foundation for deploying perturbation training to prevent falls in people with multiple sclerosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    8
    Citations
    NaN
    KQI
    []