Development of thin gaseous ionization detectors for measurements of high-energy hadron beams

2014 
Thin gaseous ionization detectors have been developed based on a current-integration mode for measurements of high-energy hadron beams. In the present detector R&D, two different types of prototype detectors with an active area of 16 × 16 cm2, each equipped with 256-signal processing channels, were manufactured and tested with 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS). The first one was equipped with a single gas electron multiplier (GEM), and the second one was a thin-plane ionization detector without the GEM foil loaded. The linearities of the detector responses for both detectors were examined for various proton-beam intensities. The quantitative accuracies for the channel-response data and for the total detector responses measured for 43-MeV protons were 0.4% and 0.34%, respectively. We conclude from the beam test that operating both types of detectors in the current-integration mode will allow quality measurements of dynamic-mode hadron beams to be performed with accuracies of better than 1%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    4
    Citations
    NaN
    KQI
    []