Reversal of multidrug resistance by the staurosporine derivatives CGP 41251 and CGP 42700

1998 
It has been shown previously that the staurosporine derivative CGP 41251, a specific inhibitor of protein kinase C (IC50 = 50 nM), exhibits antitumor activity and reverses mdr1-mediated multidrug resistance. At present, the compound is evaluated as an anticancer drug in clinical phase I trials. We compared the effects of CGP 41251 with CGP 42700, another staurosporine derivative, which exhibits low protein kinase C inhibiting activity (IC50 = >100 μM). We found that in contrast to CGP 41251, CGP 42700 does not show antiproliferative activity in HeLa and KB cells in tissue culture (up to a concentration of 10 μM). We compared both compounds for their ability to reverse mdr1-mediated resistance in KB-C1 and in HeLa-MDR1 cells (transfected with the mdr1 gene). CGP 42700 is able to reverse mdr1-mediated resistance to a similar extent as CGP 41251. The intracellular accumulation of rhodamine 123 in KB-C1 cells following pretreatment with CGP 41251 for 30 min was higher than that following treatment with CGP 42700 if determined in medium without serum. However, quantitation of rhodamine efflux in an ex vivo assay using human CD8+ cells in serum showed that CGP 42700 is more effective in inhibiting the efflux of rhodamine 123 than CGP 41251. We conclude from our results that (1) CGP 42700 is more effective in reversal of multidrug resistance in serum than CGP 41251, indicating that the compound may be useful for treatment of patients, and (2) CGP 42700 does not inhibit protein kinase C and cell proliferation and, therefore, may be less toxic and elicit less side effects in humans than other chemosensitizers. Int. J. Cancer 77:64–69, 1998.© 1998 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    21
    Citations
    NaN
    KQI
    []