Low temperature iron gettering by grown-in defects in p-type Czochralski silicon

2016 
Abstract Low temperature iron gettering in as-grown boron doped Czochralski silicon (Cz-Si) at temperatures between 220 and 500 °C is studied using microwave-photoconductive decay based minority carrier lifetime measurements. Scanning infrared microscopy technique is used to study the defect density/size distribution in the samples before and after anneal. It is found that the decrease of interstitial iron (Fe i ) concentration shows a double exponential dependence on annealing time at all temperatures. This suggests the existence of two sinks for Fe i . Meanwhile, the observed bulk defect densities and sizes in contaminated and as-grown samples are nearly the same, implying that the grown-in defects could be the gettering centers in this process. The results are important for understanding and controlling low temperature Fe i gettering during processing of Cz-Si based devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    3
    Citations
    NaN
    KQI
    []