Assessment of the impact of non-uniform illumination and temperature profiles on a dense array CPV receiver performance

2018 
Abstract The performance of dense array Concentrating PhotoVoltaics (CPV) receivers is reduced by the increase of average temperature and temperature non-uniformities which arise from illumination profiles and the characteristics of the cooling mechanism used. The magnitude of the impact of both illumination and temperature non uniformities depend on the electrical configuration of the CPV cell array. In this study, the impact of a cooling device, formed by a matrix of microfluidic cells with individually variable coolant flow rate, on the performance of a CPV receiver submitted to a non-uniform irradiance scenario is assessed and compared with microchannel cooling for three electrical configurations. The proposed cooling scheme tailors the flow rate distribution, and therefore the local heat extraction capacity, to the illumination profile, allowing the reduction of the temperature difference across the CPV receiver up to one third of the one obtained through microchannel cooling. This characteristic of the microfluidic cells cooling device, combined to its low pumping power, generates an improvement of the Net PV power of 3.83% for one of the configuration, the 6x8 matrix one.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    9
    Citations
    NaN
    KQI
    []